
Creating, Modifying and Populating FileMaker Pro Tables
Using BE_FileMakerSQL

by Oliver Reid

FileMaker Pro ("FMP") incorporates a SQL API

FMP’s ExecuteSQL function allows you to run SQL "SELECT" queries
against TOs in your Schema, but not to run other SQL commands. The
Execute SQL script step allows you perform a wide range of SQL
operations on SQL databases, including an FMP Database, accessible
via ODBC.

The BE_FileMakerSQL function, included in the free BaseElements plugin,
provides the same access to the SQL API directly.

This API is documented here

The accompanying file, Filemaker_SQL.fmp12, includes scripting and some
custom functions used to demonstrate execution of these three commands:

DROP TABLE table_name ,

CREATE TABLE table_name , and

INSERT INTO TABLE table_name

This article covers some issues I have worked though when coding with
the FileMaker SQL API:

Safety Requirements

Coding Considerations

SAFETY REQUIREMENTS

Modifying the file structure while anything else is happening is dangerous.

Ideally, use the above SQL commands:

Only in development mode - not with live data

Use only in single-user mode

https://baseelements.com/downloads/
https://help.claris.com/en/sql-reference.pdf
https://help.claris.com/en/sql-reference.pdf

CODING CONSIDERATIONS

Check for completion of API commands

There is no "wait for completion" option for API statements.

I have found that performing any script step that assumes a previous API command has
completed, when it has not, can cause both operations to fail.

So the scripting in the demo files checks for completion before finishing.

E.g., for DROP table ==> 

Base Tables and Table Occurrences

FileMaker Pro "Base Tables" are the objects that contain field definitions and data. Each
Base Table is represented by at least one Table Occurrence ("TO").

When first creating a table using "Manage Database" tool, FMP creates a Base Table
and a TO with the same name (unless that TO name already exists - then " Copy" will
be appended to it), and a new layout to enter data into it.

The TO name can be changed and additional TOs for the Base Table can be added to
the schema.

The SQL API refers to a TABLE. I did some research to make sure I understood if and/
or when TABLE refers to a BaseTable vs. a TO:

CREATE TABLE table_name creates Base Table and a TO with the same
name, unless that TO name already exists in which case the command will fail.

It will also fail if a Base Table with that name already exists, no matter how its
TOs are named. (The SQL "IF NOT EXISTS" option is not available.)

DROP TABLE table_name will remove a TO named for the table_name.

- If there is the only one TO for its Base Table, that Base Table, no matter
what its name, will also be removed.

- If there is more than one TO for that Base Table, then the Base Table will not
be removed

- If there is no TO with that name the command will fail, even there is a Base
Table with that name

To ensure a specific BaseTable and all its TO’s are removed, your script needs to
loop through and DROP each TO.

INSERT INTO table_name requires a TO with the table_name name . So to
insert data into a specific BaseTable your script must use the name of one of its
TO’s.

The scripting in the demo file takes all the above into account to perform DROP,
CREATE and INSERT operations in succession

SQL vs. FMP data types

FMP just has Text, Number, Time, Date, Time, Timestamp, Container data types. SQL

API requires SQL data types, but not all SQL data types are recognized

The SQL API only allows:

NUMERIC, DECIMAL, INT

all these will result in a Number field being created in FMP

For NUMERIC and DECIMAL, you can specify the precision and scale. For
example: DECIMAL(10,0)

VARCHAR, CHARACTER VARYING

for FMP Text Fields

For these you can specify the length of the string

e.g., VARCHAR(255)

Note that TEXT is, ironically, not allowed. Nor is CHAR.

DATE, TIME, TIMESTAMP,

For these, you can specify the precision. For example: TIMESTAMP(6)

BLOB, VARBINARY, LONGVARBINARY, or BINARY VARYING.

for container fields

The demo file uses Varchar for Text Fields and Decimal for Number fields

Primary Key Fields
This statement:

CREATE TABLE "My Table"

(a_pk INT PRIMARY KEY,

"Name" varchar,

"Date of Birth" Date,

"Height" decimal,

"Appointment Date-Time" Timestamp)

Will create a field "a_pk" with these validation requirements:

However, the SQL "Auto Increment" option is not available in the API, and automatic
entry of a UUID cannot be specified via a CREATE TABLE statement.

Names of Tables and Columns in API Commands

The API does not recognize the backtick (`) character . Enclose column and table
names in double quotes to avoid errors caused by problematic names.

Case Sensitivity for API Commands

I have found that for the API SQL command names, keywords, and data types are not
case sensitive:

e.g., droP tABle "My Table" works.

Data Values for INSERT statements

Date, Time and Timestamp values must be in SQL format.

(The demo file includes some custom functions to convert FileMaker values to SQL
formats.)

Data values for all non-numeric data types must enclosed in single quotes Date,

Time and Timestamp values must be preceded by the data type" e.g.,

VALUES (1, 'John',DATE '2000-01-01',72.5,TIMESTAMP '2021-02-21
10:00:00')

Note that Date and Timestamp values are preceded by a label: DATE or
TIMESTAMP

The FMP SQL guide suggests that "Each INSERT statement adds one record to the
database table." (Page18.)

However, I have that found that a single INSERT statement can add multiple rows, e.g.:

INSERT INTO "MyTable"

 ("a_pk","Name","Date of Birth","Height","Appointment Date-Time")

 VALUES

(1, 'John',DATE '2000-01-01',72.5,TIMESTAMP '2021-02-21 10:00:00'),

(2, 'Mary',DATE '1996-02-03',67,TIMESTAMP '2021-02-22 03:00:00')

